Rewrite memory allocation.

This commit is contained in:
XMRig 2018-04-15 11:08:47 +07:00
parent 4b71b7aa29
commit 9125b6c251
19 changed files with 212 additions and 224 deletions

View file

@ -19,6 +19,7 @@ set(HEADERS
src/common/config/ConfigWatcher.h src/common/config/ConfigWatcher.h
src/common/Platform.h src/common/Platform.h
src/common/utils/c_str.h src/common/utils/c_str.h
src/common/utils/mm_malloc.h
src/common/xmrig.h src/common/xmrig.h
src/Console.h src/Console.h
src/core/Config.cpp src/core/Config.cpp

View file

@ -76,8 +76,6 @@ App::App(int argc, char **argv) :
App::~App() App::~App()
{ {
Mem::release();
uv_tty_reset_mode(); uv_tty_reset_mode();
delete m_console; delete m_console;
@ -101,11 +99,7 @@ int App::exec()
background(); background();
Mem::allocate(m_controller->config()->algorithm(), Mem::init(m_controller->config()->isHugePages());
m_controller->config()->threadsCount(),
m_controller->config()->isDoubleHash(),
m_controller->config()->isHugePages()
);
Summary::print(m_controller); Summary::print(m_controller);

View file

@ -23,70 +23,49 @@
*/ */
#include <memory.h> #include "common/utils/mm_malloc.h"
#include "crypto/CryptoNight.h" #include "crypto/CryptoNight.h"
#include "crypto/CryptoNight_constants.h" #include "crypto/CryptoNight_constants.h"
#include "Mem.h" #include "Mem.h"
bool Mem::m_doubleHash = false; bool Mem::m_enabled = true;
int Mem::m_algo = 0; int Mem::m_flags = 0;
int Mem::m_flags = 0;
int Mem::m_threads = 0;
size_t Mem::m_offset = 0;
size_t Mem::m_size = 0;
alignas(16) uint8_t *Mem::m_memory = nullptr;
cryptonight_ctx *Mem::create(int threadId)
MemInfo Mem::create(cryptonight_ctx **ctx, xmrig::Algo algorithm, size_t count)
{ {
using namespace xmrig;
MemInfo info;
info.size = cn_select_memory(algorithm) * count;
# ifndef XMRIG_NO_AEON # ifndef XMRIG_NO_AEON
if (m_algo == xmrig::CRYPTONIGHT_LITE) { info.size += info.size % cn_select_memory<CRYPTONIGHT>();
return createLite(threadId);
}
# endif # endif
const size_t size = m_algo == xmrig::CRYPTONIGHT_HEAVY ? xmrig::cn_select_memory<xmrig::CRYPTONIGHT_HEAVY>() info.pages = info.size / cn_select_memory<CRYPTONIGHT>();
: xmrig::cn_select_memory<xmrig::CRYPTONIGHT>();
cryptonight_ctx *ctx = reinterpret_cast<cryptonight_ctx *>(&m_memory[size - sizeof(cryptonight_ctx) * (threadId + 1)]); allocate(info, m_enabled);
const int ratio = m_doubleHash ? 2 : 1; for (size_t i = 0; i < count; ++i) {
ctx->memory = &m_memory[size * (threadId * ratio + 1)]; cryptonight_ctx *c = static_cast<cryptonight_ctx *>(_mm_malloc(sizeof(cryptonight_ctx), 16));
c->memory = info.memory + (i * cn_select_memory(algorithm));
return ctx; ctx[i] = c;
}
void *Mem::calloc(size_t num, size_t size)
{
void *mem = &m_memory[m_offset];
m_offset += (num * size);
memset(mem, 0, num * size);
return mem;
}
#ifndef XMRIG_NO_AEON
cryptonight_ctx *Mem::createLite(int threadId) {
cryptonight_ctx *ctx;
if (!m_doubleHash) {
const size_t offset = MONERO_MEMORY * (threadId + 1);
ctx = reinterpret_cast<cryptonight_ctx *>(&m_memory[offset + AEON_MEMORY]);
ctx->memory = &m_memory[offset];
return ctx;
} }
ctx = reinterpret_cast<cryptonight_ctx *>(&m_memory[MONERO_MEMORY - sizeof(cryptonight_ctx) * (threadId + 1)]); return info;
ctx->memory = &m_memory[MONERO_MEMORY * (threadId + 1)];
return ctx;
} }
#endif
void Mem::release(cryptonight_ctx **ctx, size_t count, MemInfo &info)
{
release(info);
for (size_t i = 0; i < count; ++i) {
_mm_free(ctx[i]);
}
}

View file

@ -36,6 +36,16 @@
struct cryptonight_ctx; struct cryptonight_ctx;
struct MemInfo
{
alignas(16) uint8_t *memory;
size_t hugePages;
size_t pages;
size_t size;
};
class Mem class Mem
{ {
public: public:
@ -45,29 +55,18 @@ public:
Lock = 4 Lock = 4
}; };
static bool allocate(xmrig::Algo algo, int threads, bool doubleHash, bool enabled); static MemInfo create(cryptonight_ctx **ctx, xmrig::Algo algorithm, size_t count);
static cryptonight_ctx *create(int threadId); static void init(bool enabled);
static void *calloc(size_t num, size_t size); static void release(cryptonight_ctx **ctx, size_t count, MemInfo &info);
static void release();
static inline bool isDoubleHash() { return m_doubleHash; }
static inline bool isHugepagesAvailable() { return (m_flags & HugepagesAvailable) != 0; } static inline bool isHugepagesAvailable() { return (m_flags & HugepagesAvailable) != 0; }
static inline bool isHugepagesEnabled() { return (m_flags & HugepagesEnabled) != 0; }
static inline int flags() { return m_flags; }
static inline int threads() { return m_threads; }
private: private:
static bool m_doubleHash; static void allocate(MemInfo &info, bool enabled);
static int m_algo; static void release(MemInfo &info);
static int m_flags;
static int m_threads;
static size_t m_offset;
static size_t m_size;
alignas(16) static uint8_t *m_memory;
# ifndef XMRIG_NO_AEON static int m_flags;
static cryptonight_ctx *createLite(int threadId); static bool m_enabled;
# endif
}; };

View file

@ -27,75 +27,63 @@
#include <sys/mman.h> #include <sys/mman.h>
#if defined(XMRIG_ARM) && !defined(__clang__) #include "common/utils/mm_malloc.h"
# include "aligned_malloc.h"
#else
# include <mm_malloc.h>
#endif
#include "common/xmrig.h" #include "common/xmrig.h"
#include "crypto/CryptoNight.h" #include "crypto/CryptoNight.h"
#include "log/Log.h" #include "log/Log.h"
#include "Mem.h" #include "Mem.h"
bool Mem::allocate(xmrig::Algo algo, int threads, bool doubleHash, bool enabled) void Mem::init(bool enabled)
{ {
m_algo = algo; m_enabled = enabled;
m_threads = threads; }
m_doubleHash = doubleHash;
const int ratio = (doubleHash && algo != xmrig::CRYPTONIGHT_LITE) ? 2 : 1;
m_size = MONERO_MEMORY * (threads * ratio + 1);
if (algo == xmrig::CRYPTONIGHT_HEAVY) { void Mem::allocate(MemInfo &info, bool enabled)
m_size *= 2; {
} info.hugePages = 0;
if (!enabled) { if (!enabled) {
m_memory = static_cast<uint8_t*>(_mm_malloc(m_size, 16)); info.memory = static_cast<uint8_t*>(_mm_malloc(info.size, 16));
return true;
}
m_flags |= HugepagesAvailable; return;
}
# if defined(__APPLE__) # if defined(__APPLE__)
m_memory = static_cast<uint8_t*>(mmap(0, m_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, VM_FLAGS_SUPERPAGE_SIZE_2MB, 0)); info.memory = static_cast<uint8_t*>(mmap(0, info.size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, VM_FLAGS_SUPERPAGE_SIZE_2MB, 0));
# elif defined(__FreeBSD__) # elif defined(__FreeBSD__)
m_memory = static_cast<uint8_t*>(mmap(0, m_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER | MAP_PREFAULT_READ, -1, 0)); info.memory = static_cast<uint8_t*>(mmap(0, info.size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_ALIGNED_SUPER | MAP_PREFAULT_READ, -1, 0));
# else # else
m_memory = static_cast<uint8_t*>(mmap(0, m_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB | MAP_POPULATE, 0, 0)); info.memory = static_cast<uint8_t*>(mmap(0, info.size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB | MAP_POPULATE, 0, 0));
# endif # endif
if (m_memory == MAP_FAILED) {
m_memory = static_cast<uint8_t*>(_mm_malloc(m_size, 16)); if (info.memory == MAP_FAILED) {
return true; return allocate(info, false);;
} }
m_flags |= HugepagesEnabled; info.hugePages = info.pages;
if (madvise(m_memory, m_size, MADV_RANDOM | MADV_WILLNEED) != 0) { if (madvise(info.memory, info.size, MADV_RANDOM | MADV_WILLNEED) != 0) {
LOG_ERR("madvise failed"); LOG_ERR("madvise failed");
} }
if (mlock(m_memory, m_size) == 0) { if (mlock(info.memory, info.size) == 0) {
m_flags |= Lock; m_flags |= Lock;
} }
return true;
} }
void Mem::release() void Mem::release(MemInfo &info)
{ {
if (m_flags & HugepagesEnabled) { if (info.hugePages) {
if (m_flags & Lock) { if (m_flags & Lock) {
munlock(m_memory, m_size); munlock(info.memory, info.size);
} }
munmap(m_memory, m_size); munmap(info.memory, info.size);
} }
else { else {
_mm_free(m_memory); _mm_free(info.memory);
} }
} }

View file

@ -28,14 +28,11 @@
#include <ntsecapi.h> #include <ntsecapi.h>
#include <tchar.h> #include <tchar.h>
#ifdef __GNUC__
# include <mm_malloc.h>
#else
# include <malloc.h>
#endif
#include "common/utils/mm_malloc.h"
#include "common/xmrig.h" #include "common/xmrig.h"
#include "crypto/CryptoNight.h" #include "crypto/CryptoNight.h"
#include "crypto/CryptoNight_constants.h"
#include "log/Log.h" #include "log/Log.h"
#include "Mem.h" #include "Mem.h"
@ -145,46 +142,43 @@ static BOOL TrySetLockPagesPrivilege() {
} }
bool Mem::allocate(xmrig::Algo algo, int threads, bool doubleHash, bool enabled) void Mem::init(bool enabled)
{ {
m_algo = algo; m_enabled = enabled;
m_threads = threads;
m_doubleHash = doubleHash;
const int ratio = (doubleHash && algo != xmrig::CRYPTONIGHT_LITE) ? 2 : 1; if (enabled && TrySetLockPagesPrivilege()) {
m_size = MONERO_MEMORY * (threads * ratio + 1);
if (algo == xmrig::CRYPTONIGHT_HEAVY) {
m_size *= 2;
}
if (!enabled) {
m_memory = static_cast<uint8_t*>(_mm_malloc(m_size, 16));
return true;
}
if (TrySetLockPagesPrivilege()) {
m_flags |= HugepagesAvailable; m_flags |= HugepagesAvailable;
} }
m_memory = static_cast<uint8_t*>(VirtualAlloc(NULL, m_size, MEM_COMMIT | MEM_RESERVE | MEM_LARGE_PAGES, PAGE_READWRITE));
if (!m_memory) {
m_memory = static_cast<uint8_t*>(_mm_malloc(m_size, 16));
}
else {
m_flags |= HugepagesEnabled;
}
return true;
} }
void Mem::release() void Mem::allocate(MemInfo &info, bool enabled)
{ {
if (m_flags & HugepagesEnabled) { info.hugePages = 0;
VirtualFree(m_memory, 0, MEM_RELEASE);
if (!enabled) {
info.memory = static_cast<uint8_t*>(_mm_malloc(info.size, 16));
return;
}
info.memory = static_cast<uint8_t*>(VirtualAlloc(nullptr, info.size, MEM_COMMIT | MEM_RESERVE | MEM_LARGE_PAGES, PAGE_READWRITE));
if (info.memory) {
info.hugePages = info.pages;
return;
}
allocate(info, false);
}
void Mem::release(MemInfo &info)
{
if (info.hugePages) {
VirtualFree(info.memory, 0, MEM_RELEASE);
} }
else { else {
_mm_free(m_memory); _mm_free(info.memory);
} }
} }

View file

@ -58,14 +58,15 @@ static void print_versions(xmrig::Config *config)
static void print_memory(xmrig::Config *config) { static void print_memory(xmrig::Config *config) {
# ifdef _WIN32
if (config->isColors()) { if (config->isColors()) {
Log::i()->text("\x1B[01;32m * \x1B[01;37mHUGE PAGES: %s, %s", Log::i()->text("\x1B[01;32m * \x1B[01;37mHUGE PAGES: %s",
Mem::isHugepagesAvailable() ? "\x1B[01;32mavailable" : "\x1B[01;31munavailable", Mem::isHugepagesAvailable() ? "\x1B[01;32mavailable" : "\x1B[01;31munavailable");
Mem::isHugepagesEnabled() ? "\x1B[01;32menabled" : "\x1B[01;31mdisabled");
} }
else { else {
Log::i()->text(" * HUGE PAGES: %s, %s", Mem::isHugepagesAvailable() ? "available" : "unavailable", Mem::isHugepagesEnabled() ? "enabled" : "disabled"); Log::i()->text(" * HUGE PAGES: %s", Mem::isHugepagesAvailable() ? "available" : "unavailable");
} }
# endif
} }

View file

@ -267,7 +267,7 @@ void ApiRouter::getMiner(rapidjson::Document &doc) const
doc.AddMember("ua", rapidjson::StringRef(Platform::userAgent()), allocator); doc.AddMember("ua", rapidjson::StringRef(Platform::userAgent()), allocator);
doc.AddMember("cpu", cpu, allocator); doc.AddMember("cpu", cpu, allocator);
doc.AddMember("algo", rapidjson::StringRef(m_controller->config()->algoName()), allocator); doc.AddMember("algo", rapidjson::StringRef(m_controller->config()->algoName()), allocator);
doc.AddMember("hugepages", Mem::isHugepagesEnabled(), allocator); doc.AddMember("hugepages", false, allocator);
doc.AddMember("donate_level", m_controller->config()->donateLevel(), allocator); doc.AddMember("donate_level", m_controller->config()->donateLevel(), allocator);
} }

View file

@ -0,0 +1,43 @@
/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2016-2018 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __MM_MALLOC_PORTABLE_H__
#define __MM_MALLOC_PORTABLE_H__
#ifdef _WIN32
# ifdef __GNUC__
# include <mm_malloc.h>
# else
# include <malloc.h>
# endif
#else
# if defined(XMRIG_ARM) && !defined(__clang__)
# include "aligned_malloc.h"
# else
# include <mm_malloc.h>
# endif
#endif
#endif /* __MM_MALLOC_PORTABLE_H__ */

View file

@ -40,8 +40,7 @@
struct cryptonight_ctx { struct cryptonight_ctx {
alignas(16) uint8_t state0[200]; alignas(16) uint8_t state[200];
alignas(16) uint8_t state1[200];
alignas(16) uint8_t* memory; alignas(16) uint8_t* memory;
}; };

View file

@ -27,13 +27,7 @@
#define __CRYPTONIGHT_ARM_H__ #define __CRYPTONIGHT_ARM_H__
#if defined(XMRIG_ARM) && !defined(__clang__) #include "common/utils/mm_malloc.h"
# include "aligned_malloc.h"
#else
# include <mm_malloc.h>
#endif
#include "crypto/CryptoNight.h" #include "crypto/CryptoNight.h"
#include "crypto/CryptoNight_constants.h" #include "crypto/CryptoNight_constants.h"
#include "crypto/CryptoNight_monero.h" #include "crypto/CryptoNight_monero.h"

View file

@ -32,7 +32,7 @@
uint64_t tweak1_2_##part = 0; \ uint64_t tweak1_2_##part = 0; \
if (VARIANT > 0) { \ if (VARIANT > 0) { \
tweak1_2_##part = (*reinterpret_cast<const uint64_t*>(input + 35 + part * size) ^ \ tweak1_2_##part = (*reinterpret_cast<const uint64_t*>(input + 35 + part * size) ^ \
*(reinterpret_cast<const uint64_t*>(ctx->state##part) + 24)); \ *(reinterpret_cast<const uint64_t*>(ctx[part]->state) + 24)); \
} }
#else #else
# define VARIANT1_INIT(part) \ # define VARIANT1_INIT(part) \

View file

@ -403,7 +403,7 @@ static inline void cryptonight_monero_tweak(uint64_t* mem_out, __m128i tmp)
template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT> template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT>
inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx *__restrict__ ctx) inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx)
{ {
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>(); constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO>(); constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO>();
@ -414,14 +414,14 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
return; return;
} }
keccak(input, (int) size, ctx->state0, 200); keccak(input, (int) size, ctx[0]->state, 200);
VARIANT1_INIT(0) VARIANT1_INIT(0)
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx->state0, (__m128i*) ctx->memory); cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx[0]->state, (__m128i*) ctx[0]->memory);
const uint8_t* l0 = ctx->memory; const uint8_t* l0 = ctx[0]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state0); uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t al0 = h0[0] ^ h0[4]; uint64_t al0 = h0[0] ^ h0[4];
uint64_t ah0 = h0[1] ^ h0[5]; uint64_t ah0 = h0[1] ^ h0[5];
@ -476,15 +476,15 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
} }
} }
cn_implode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx->memory, (__m128i*) ctx->state0); cn_implode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) ctx[0]->memory, (__m128i*) ctx[0]->state);
keccakf(h0, 24); keccakf(h0, 24);
extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, output); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
} }
template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT> template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT>
inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx)
{ {
constexpr size_t MASK = xmrig::cn_select_mask<ALGO>(); constexpr size_t MASK = xmrig::cn_select_mask<ALGO>();
constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO>(); constexpr size_t ITERATIONS = xmrig::cn_select_iter<ALGO>();
@ -495,16 +495,16 @@ inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t si
return; return;
} }
keccak(input, (int) size, ctx->state0, 200); keccak(input, (int) size, ctx[0]->state, 200);
keccak(input + size, (int) size, ctx->state1, 200); keccak(input + size, (int) size, ctx[1]->state, 200);
VARIANT1_INIT(0); VARIANT1_INIT(0);
VARIANT1_INIT(1); VARIANT1_INIT(1);
const uint8_t* l0 = ctx->memory; const uint8_t* l0 = ctx[0]->memory;
const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l1 = ctx[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state0); uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state1); uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad<ALGO, MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
@ -606,25 +606,25 @@ inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t si
keccakf(h0, 24); keccakf(h0, 24);
keccakf(h1, 24); keccakf(h1, 24);
extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, output); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx->state1[0] & 3](ctx->state1, 200, output + 32); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
} }
template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT> template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT>
inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx)
{ {
} }
template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT> template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT>
inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx)
{ {
} }
template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT> template<xmrig::Algo ALGO, bool SOFT_AES, int VARIANT>
inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx) inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx)
{ {
} }

View file

@ -43,14 +43,22 @@ public:
CUDA CUDA
}; };
enum Multiway {
SingleWay = 1,
DoubleWay,
TripleWay,
QuadWay,
PentaWay
};
virtual ~IThread() {} virtual ~IThread() {}
virtual Algo algorithm() const = 0; virtual Algo algorithm() const = 0;
virtual int multiway() const = 0; virtual int priority() const = 0;
virtual int priority() const = 0; virtual int64_t affinity() const = 0;
virtual int64_t affinity() const = 0; virtual Multiway multiway() const = 0;
virtual size_t index() const = 0; virtual size_t index() const = 0;
virtual Type type() const = 0; virtual Type type() const = 0;
# ifndef XMRIG_NO_API # ifndef XMRIG_NO_API
virtual rapidjson::Value toAPI(rapidjson::Document &doc) const = 0; virtual rapidjson::Value toAPI(rapidjson::Document &doc) const = 0;

View file

@ -38,15 +38,6 @@ namespace xmrig {
class CpuThread : public IThread class CpuThread : public IThread
{ {
public: public:
enum Multiway {
SingleWay = 1,
DoubleWay,
TripleWay,
QuadWay,
PentaWay
};
struct Data struct Data
{ {
inline Data() : valid(false), affinity(-1L), multiway(SingleWay) {} inline Data() : valid(false), affinity(-1L), multiway(SingleWay) {}
@ -68,7 +59,7 @@ public:
CpuThread(size_t index, Algo algorithm, AlgoVariant av, Multiway multiway, int64_t affinity, int priority, bool softAES, bool prefetch); CpuThread(size_t index, Algo algorithm, AlgoVariant av, Multiway multiway, int64_t affinity, int priority, bool softAES, bool prefetch);
~CpuThread(); ~CpuThread();
typedef void (*cn_hash_fun)(const uint8_t *input, size_t size, uint8_t *output, cryptonight_ctx *ctx); typedef void (*cn_hash_fun)(const uint8_t *input, size_t size, uint8_t *output, cryptonight_ctx **ctx);
static cn_hash_fun fn(Algo algorithm, AlgoVariant av, Variant variant); static cn_hash_fun fn(Algo algorithm, AlgoVariant av, Variant variant);
static CpuThread *createFromAV(size_t index, Algo algorithm, AlgoVariant av, int64_t affinity, int priority); static CpuThread *createFromAV(size_t index, Algo algorithm, AlgoVariant av, int64_t affinity, int priority);
@ -80,9 +71,9 @@ public:
inline cn_hash_fun fn(Variant variant) const { return fn(m_algorithm, m_av, variant); } inline cn_hash_fun fn(Variant variant) const { return fn(m_algorithm, m_av, variant); }
inline Algo algorithm() const override { return m_algorithm; } inline Algo algorithm() const override { return m_algorithm; }
inline int multiway() const override { return m_multiway; }
inline int priority() const override { return m_priority; } inline int priority() const override { return m_priority; }
inline int64_t affinity() const override { return m_affinity; } inline int64_t affinity() const override { return m_affinity; }
inline Multiway multiway() const override { return m_multiway; }
inline size_t index() const override { return m_index; } inline size_t index() const override { return m_index; }
inline Type type() const override { return CPU; } inline Type type() const override { return CPU; }

View file

@ -36,6 +36,14 @@ template<size_t N>
MultiWorker<N>::MultiWorker(Handle *handle) MultiWorker<N>::MultiWorker(Handle *handle)
: Worker(handle) : Worker(handle)
{ {
m_memory = Mem::create(m_ctx, m_thread->algorithm(), N);
}
template<size_t N>
MultiWorker<N>::~MultiWorker()
{
Mem::release(m_ctx, N, m_memory);
} }
@ -46,24 +54,24 @@ bool MultiWorker<N>::selfTest()
return false; return false;
} }
m_thread->fn(xmrig::VARIANT_NONE)(test_input, 76, m_result.result, m_ctxLegacy); m_thread->fn(xmrig::VARIANT_NONE)(test_input, 76, m_hash, m_ctx);
if (m_thread->algorithm() == xmrig::CRYPTONIGHT && memcmp(m_result.result, test_output_v0, 32) == 0) { if (m_thread->algorithm() == xmrig::CRYPTONIGHT && memcmp(m_hash, test_output_v0, sizeof m_hash) == 0) {
m_thread->fn(xmrig::VARIANT_V1)(test_input, 76, m_result.result, m_ctxLegacy); m_thread->fn(xmrig::VARIANT_V1)(test_input, 76, m_hash, m_ctx);
return memcmp(m_result.result, test_output_v1, 32) == 0; return memcmp(m_hash, test_output_v1, sizeof m_hash) == 0;
} }
# ifndef XMRIG_NO_AEON # ifndef XMRIG_NO_AEON
if (m_thread->algorithm() == xmrig::CRYPTONIGHT_LITE && memcmp(m_result.result, test_output_v0_lite, 32) == 0) { if (m_thread->algorithm() == xmrig::CRYPTONIGHT_LITE && memcmp(m_hash, test_output_v0_lite, sizeof m_hash) == 0) {
m_thread->fn(xmrig::VARIANT_V1)(test_input, 76, m_result.result, m_ctxLegacy); m_thread->fn(xmrig::VARIANT_V1)(test_input, 76, m_hash, m_ctx);
return memcmp(m_result.result, test_output_v1_lite, 32) == 0; return memcmp(m_hash, test_output_v1_lite, sizeof m_hash) == 0;
} }
# endif # endif
# ifndef XMRIG_NO_SUMO # ifndef XMRIG_NO_SUMO
return m_thread->algorithm() == xmrig::CRYPTONIGHT_HEAVY && memcmp(m_result.result, test_output_heavy, 32) == 0; return m_thread->algorithm() == xmrig::CRYPTONIGHT_HEAVY && memcmp(m_hash, test_output_heavy, sizeof m_hash) == 0;
# else # else
return false; return false;
# endif # endif
@ -92,7 +100,7 @@ void MultiWorker<N>::start()
storeStats(); storeStats();
} }
m_thread->fn(m_state.job.variant())(m_state.blob, m_state.job.size(), m_hash, m_ctxLegacy); m_thread->fn(m_state.job.variant())(m_state.blob, m_state.job.size(), m_hash, m_ctx);
for (size_t i = 0; i < N; ++i) { for (size_t i = 0; i < N; ++i) {
if (*reinterpret_cast<uint64_t*>(m_hash + (i * 32) + 24) < m_state.job.target()) { if (*reinterpret_cast<uint64_t*>(m_hash + (i * 32) + 24) < m_state.job.target()) {

View file

@ -26,6 +26,7 @@
#define __MULTIWORKER_H__ #define __MULTIWORKER_H__
#include "Mem.h"
#include "net/Job.h" #include "net/Job.h"
#include "net/JobResult.h" #include "net/JobResult.h"
#include "workers/Worker.h" #include "workers/Worker.h"
@ -39,6 +40,7 @@ class MultiWorker : public Worker
{ {
public: public:
MultiWorker(Handle *handle); MultiWorker(Handle *handle);
~MultiWorker();
protected: protected:
bool selfTest() override; bool selfTest() override;
@ -61,15 +63,11 @@ private:
}; };
// cryptonight_ctx *m_ctx[N]; cryptonight_ctx *m_ctx[N];
MemInfo m_memory;
uint8_t m_hash[N * 32];
State m_state;
State m_pausedState; State m_pausedState;
State m_state;
Job m_job; uint8_t m_hash[N * 32];
Job m_paused;
JobResult m_result;
}; };

View file

@ -26,7 +26,6 @@
#include "common/Platform.h" #include "common/Platform.h"
#include "Cpu.h" #include "Cpu.h"
#include "Mem.h"
#include "workers/CpuThread.h" #include "workers/CpuThread.h"
#include "workers/Handle.h" #include "workers/Handle.h"
#include "workers/Worker.h" #include "workers/Worker.h"
@ -47,12 +46,6 @@ Worker::Worker(Handle *handle) :
} }
Platform::setThreadPriority(m_thread->priority()); Platform::setThreadPriority(m_thread->priority());
m_ctxLegacy = Mem::create(m_id);
}
Worker::~Worker()
{
} }

View file

@ -45,7 +45,6 @@ class Worker : public IWorker
{ {
public: public:
Worker(Handle *handle); Worker(Handle *handle);
~Worker();
inline size_t id() const override { return m_id; } inline size_t id() const override { return m_id; }
inline uint64_t hashCount() const override { return m_hashCount.load(std::memory_order_relaxed); } inline uint64_t hashCount() const override { return m_hashCount.load(std::memory_order_relaxed); }
@ -57,7 +56,6 @@ protected:
const size_t m_id; const size_t m_id;
const size_t m_totalWays; const size_t m_totalWays;
const uint32_t m_offset; const uint32_t m_offset;
cryptonight_ctx *m_ctxLegacy;
std::atomic<uint64_t> m_hashCount; std::atomic<uint64_t> m_hashCount;
std::atomic<uint64_t> m_timestamp; std::atomic<uint64_t> m_timestamp;
uint64_t m_count; uint64_t m_count;